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Linköping University, Department of Mechanical Engineering/Division of Machine Design,
S-581 83 Linköping, Sweden
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A micro-slip model of a friction damper is presented in this paper. There are two
formulations derived from the original force and displacement functions of the damper: a
numerical blade-to-blade model and a linearized blade-to-ground model. The numerical
friction damper was used in a time domain simulation of the forced response of a
beam–damper system under travelling wave excitation. Frequency domain simulations with
one blade and the blade-to-ground damper were also carried out. Simulation results agree
well, except around the optimal damper weight, which is the weight that minimizes the
response amplitude of the blade and damper system. Results from frequency domain
simulations give a lighter optimal damper weight than the time domain simulations. This
leads to the conclusion that if frequency domain simulations are used to find the optimum
damper weight, then a slightly heavier damper weight should be chosen than suggested by
frequency domain results. Comparison between a microslip and a macroslip model for the
friction interface shows that the macroslip model gets close to predicting the optimal
weight, but the response level is much higher than when the microslip model was used.
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1. INTRODUCTION

High cycle fatigue of turbine and compressor blades is one of the main problems with jet
engines in service and is mostly caused by blade vibration resonance within the operating
range of the engine. Friction dampers of the mass type and more especially platform
dampers, shown in Figure 1, are frequently used by jet engine designers. It is a well know
fact that friction dampers may reduce the vibratory blade response at resonance. There
is, however, a lack of theoretical models that can predict the performance of an actual
damper. A good background and review of the subject of friction damping of turbine blade
vibration has been given by Griffin [1].

There are two theoretical approaches for the contact interface between blade and
damper, the macroslip and the microslip models. The most commonly used is the macroslip
approach, where the entire interface is either stuck or is sliding. The onset of sliding is
governed by Coulomb’s law of friction. The greatest advantage of the macroslip theory
is that it is quite straightforward compared with microslip theory. In the microslip
approach the elasticity of members in contact is included, which leads to a slip zone that
will gradually extend inward through the damper before the interface reaches macroslip.
This is a more physically motivated method to use since normal forces are high and
displacements are small in blade vibration.

Analysis has so far mostly been done on bladed disk systems, by using a simple
macroslip damper model [2], or by using a more advanced microslip damper model on a
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Figure 1. A part of a bladed disk with friction dampers.

simple structure [3, 4]. A microslip model has been described by Menq et al. [5] and applied
in finding the response of a single-degree-of-freedom system. A microslip model which is
derived from the Menq et al. model has been presented by Csaba [6].

The centrifugal force on the damper gives the normal load between blade and damper
and the damping effect arises from the relative motion between damper and blade
platform. The damper connects two adjacent blades via friction joints. This means that
the damper displacement is found through the relative motion of the baldes. This damper
type is called a blade-to-blade damper, (BB-damper).

Systems with Coulomb friction, i.e., friction dampers, are inherently non-linear.
Computer simulations are faster if the damper properties are linearized. The harmonic
balance method, HBM, is the most commonly used linearization method in friction
damping analysis. A thorough discussion of HBM may be found in reference [6]. The
accuracy of HBM may be found by comparing the frequency domain solution with the
time marching solution for the forced response of a blade–damper system. Simulations by
Menq and Griffin [7] and Csaba [6] show good agreement for a one-blade, one-damper
system where the damper was attached to a fixed point and a moving point, i.e., the beam.
This damper type is called a blade-to-ground damper, (BG-damper). Sinha and Griffin
[8, 9] have shown that if one considers a tuned bladed disk fitted with macroslip
BB-dampers linearized by harmonic balance, then the steady state response may be found
by using a single blade and an equivalent BG-damper.

One objective in this paper is to present an improvement of the microslip model in
reference [6] to incorporate both micro- and macroslip and to present a model of an actual
damper as shown in Figure 2. Another objective is to investigate if equivalence between
BB- and BG-dampers also holds for a microslip friction damper. This will be done by
comparing time-marching results using multiple blades and microslip BB-dampers with
steady state results using a single blade and an equivalent BG-damper linearized with
HBM.

Figure 2. Photo of a commercially used damper. Broken white lines indicate contact interface.
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Figure 3. Microslip model for the friction interface.

2. FRICTION INTERFACE MODEL

To model the friction interface between the blade platform and the damper contact
point, the microslip friction model developed by Csaba [6], shown in Figure 3 is used. This
model, which is derived from the Menq et al. [5] one-bar model, is as simple as possible,
but yet complete enough to show the most important properties of a microslip friction
interface. The friction interface is modelled by a rectangular bar pressed against a rigid
surface with a normal load q. The displacement of the bar end and the force are defined
as u and F respectively. The bar has a modulus of elasticity E, and a cross-section area
A. The length of the bar is l. The normal load is defined by using the quadratic function
q(x)= q0 +4q2(xl− x2)/l2. The friction force is defined by using Coulomb’s friction law
and a coefficient of friction, m, which is constant across the contact surface: Ff (x)= mq(x).
A list of notation is given in an Appendix.

2.1. - 

Force and displacement functions have been derived by Csaba [6]; only the results are
presented here. It was found convenient to express these functions as functions of the
amount of slip, D, in the interface, where D=0 means no slip and D=1 means that the
interface is on the verge of macroslip. The force function for initial loading is

Fi (Di )= mlDi (q0 + q2(2Di − 4
3D

2
i )). (1)

The displacement function for initial loading of the bar end is

ui (Di )= (ml2D2
i /EA)(q0/2+ q2(4

3Di −D2
i )). (2)

The state of the friction joint is defined by the initial loading. The force amplitude, Fi , and
displacement, ui , are defined by equations (1) and (2) respectively for a given initial slip
coefficient Di . Force and displacement for cyclic motion are then governed by the so called
Massing rules, see reference [5] or [10]. These rules states that the hysteresis curve for
unloading and reloading, Fu , uu and Fr , ur respectively may be found by scaling the initial
loading curve by a factor of two. Massing rules agree exactly with force and displacement
functions derived by Csaba [6] where these rules were not used. The broken curve in

Figure 4. Hysteresis curves for micro- and micromacroslip.
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Figure 5. Definition of forces and displacements, for analysis of blade j.

Figure 4 shows the initial loading curve and a hysteresis curve when Di =1, i.e., the
interface is on the verge of macroslip.

2.2.     --

One can now extend force and displacement functions to allow for macroslip during part
of the loading cycle. It is assumed that a given displacement, u, is applied to the interface.
The displacement function is monotonic between its peak values, with an amplitude, ua ,
which is large enough to give macroslip in the interface.

There will be both micro- and macroslip motion of the interface. For every time the
displacement changes direction, the interface will start with microslip until the slip
coefficient is D=1. The force has now reached its peak value, the whole interface starts
to slide, i.e., one has macroslip. The macroslip motion stops when the displacement
changes direction again. The micro-macroslip motion is shown in Figure 4 as the solid line
hysteresis curve.

The macroslip displacement of the interface is defined by a variable, um . This
displacement is found as the difference between the displacement amplitude and the initial
displacement that gives macroslip:

um = ua − ui (1). (3)

The unloading and reloading displacement functions for micro- and macroslip are then
found by using Massing rules by combining equation (3) with equation (2) and setting
Di =1. The force is equal to the limiting friction force during macroslip, and thus
independent of the displacement.

It may be of interest to compare different micro-macroslip curves. A slip variable is
therefore defined as

Da = ua /ui (1). (4)

The solid line curve in Figure 4 show a plot where, Da =1·5. This means that the
displacement amplitude is 1·5 times as large as required to cause macroslip of the interface.

3. BLADE-TO-BLADE FRICTION DAMPER MODEL

In this section a model will be derived of an actual blade-to-blade microslip friction
damper. The damper model will then be converted into a numerical model and a
BG-damper model for use in time and frequency domain simulations respectively.

It is assumed that the blade, denoted as blade j, shown in Figure 5, is part of a tuned
bladed disk. Dampers that connect blade j to its neighbouring blades are denoted as
dampers j-1 and j.
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Figure 2 is a photo of an actual friction damper. There are three friction joints, indicated
by broken white lines, connecting the two adjacent blades. A model of this damper is
shown in Figure 6. The model consists of two friction interfaces, and a spring between
them. The spring stiffness, kd may for example be found from a finite element model of
the physical damper.

The friction damper model in Figure 6 is chosen because it is the simplest model that
takes into account the elastic deformation of the actual damper, and can simulate a
BB-damper with micro- and macroslip. Unfortunately there is no direct coupling between
the geometry of the actual damper and the friction interface parameters, A and l. These
parameters have to be determined ad hoc. Data used here are: EA=1·82 MN, l=3 mm,
m=0·5, kd =236 N/mm.

3.1.      -- 

It is assumed that the two friction interfaces between blades and the damper are identical
and thus have the same deformation,

u1(D)= u2(D)= u(D). (5)

Using equation (5) gives the displacement of the damper, v, as

v(D)=2u(D)+F(D)/kd . (6)

If the displacement is known, then the damper force is found from equation (1) in
combination with equation (6) by iterating the slip coefficient D.

Assuming that the excitation on the blades is harmonic and of an engine order type,
one can define the excitation force as

Qj (t)=Qa sin (vt+ j8) (7)

If EO is the engine order of excitation and n is the number of blades on the disk, then
the interblade phase angle is found as

8=2pEO/n. (8)

If one assumes also that the dampers are tuned, all blades will have the same response
amplitude, but different interblade phase angles. The response at the platform may be
written as

wj (t)=waf(vt+ j8+ b), (9)

where f(vt+ j8) is the response function with its phase angle, wa is the response amplitude
and b is a general phase angle. For simplicity, the deformation of the blade platform
between damper contact points is neglected. Displacement of the damper is then found
as the relative motion between its connecting blades.

vj−1(t)=wj (t)−wj−1(t). (10)

Figure 6. Model of an actual friction damper.
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Figure 7. Hysteresis curve for the platform, 8=45°, Da =5.

The damper force corresponding to displacement vj is Fj found from equation (6). The total
force on the platform of blade j from connecting friction dampers is then

Pj (t)=Fj−1(t)−Fj (t). (11)

3.2.     

In this section it is assumed that the platform displacement, w, is given and the platform
force, P, is to be computed. Force and displacement functions from section 2.2 can be used
for the friction joint if displacements are monotonic between their peak values. The
platform force is then found by iteration, where the variable is the slip coefficient D. The
iteration procedure to find Pj is as follows: platform displacements wj−1, wj and wj+1 are
given. Equation (10) gives vj and vj−1. Damper forces Fj and Fj−1 are found by iterating
D in equation (6). Platform force Pj is then given by equation (11).

Figure 7 shows a hysteresis curve for the blade platform and Table 1 shows the state
for the two dampers connecting the blade to its neighbours. The state regions correspond
to Figure 7 and are tabulated for half a cycle of motion. There are three states of slip during
the motion: AB, where both dampers have macroslip, BC and DE, where one damper has
macroslip and the other has microslip. The third state is CD, where both dampers have
microslip. Region CD will eventually disappear if the displacement amplitude increases
enough. Region AB will on the other hand disappear as the displacement decreases.
Regions BC and DE will then disappear and there will be only microslip motion if the
slip coefficient is less than unity.

It is important to note the region AB for the case shown. The force on the platform
is zero in this region, due to the fact that the forces from the two dampers are equal, but
acting in opposite directions. This means that there is no power input from the blade, but
both dampers have macroslip, and are thus dissipating energy. This means that they are

T 1

State of dampers during half a cycle of micro-macro-slip motion

Region Damper j−1 Damper j

A–B macroslip macroslip
B–C microslip macroslip
C–D microslip microslip
D–E macroslip microslip
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dissipating energy from a neighbouring blade. This may be seen as energy that is travelling
through the bladed system.

4. LINEARIZATION

In this secton the non-linear platform hysteresis curve will be compared with the
linearized ones. The harmonic balance method, HBM, is the most commonly used
linearization method in friction damping analysis. Only the basic concept of the method
will be reviewed here. A more thorough discussion can be found in reference [6]. There
will be a non-linear response to a harmonic excitation for a non-linear system. The
response may be expanded as a Fourier series. In HBM one assumes that the first sine
and cosine terms of the Fourier expansion dominate, and all higher order terms are
neglected. The benefit of using HBM is that non-linear differential equations that describe
the blade–damper system are simplified into non-linear algebraic equations, which are
solved faster.

There are two methods for doing this linearization: one either assumes the displacement
to be harmonic and Fourier expands the force, or vice versa. In the present case one has
a restriction on the traction force: the force may not exceed the limit friction force. It is
therefore assumed that the displacement is harmonic and the force is linearized.

4.1.    

There are two ways to linearize the platform force. One may assume the platform
displacement w to be harmonic and linearize the platform force, here called HBM1 or
assume the friction interface displacement u to be harmonic and linearize the traction force
on the interface, here called HBM2. One starts by assuming harmonic platform
displacement, HBM1. Equation (9) may then be written as

wj (u)=wa sin (vt+ j8+ b)=wa sin (u), (12)

Neighbouring platforms have displacement

wj−1(u)=wa sin (u−8), wj+1(u)=wa sin (u+8). (13, 14)

The total force from dampers on the platform may then be expressed by using linearized
stiffness and damping functions which makes the computer code more efficient than if the
linearized force were used directly. The linearized properties are found as

kPeq (Da , 8)=
1

pwa g
p

−p

P sin u du, cPeq (Da , 8)=
1

pwa g
p

−p

P cos u du. (15, 16)

One should observe that the force in equations (15) and (16) is found by iteration as
described in section 3.2. The friction interface is now described by a spring, keq , and a
damper, ceq , where the linearized properties are functions of slip coefficient amplitude, Da ,
and interblade phase angle 8. The linearized traction force can then be expressed as

Peq (Da , 8, u)= kPeq (Da , 8)wa sin u+ cPeq (Da , 8)wa cos u. (17)

The resulting linearized hysteresis curve is shown as curve HBM1 in Figure 8 where it is
compared with the original non-linear hysteresis curve.
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Figure 8. Non-linear and linearized hysteresis curves, 8=23°, Da =5. ––, Non-linear; - - - - , HBM1; · · · · ,
HBM2.

4.2.      

Here the friction interface displacement is assumed to be harmonic:

u(u)= ua (Da ) sin u. (18)

Applying HBM to the friction interface traction force gives the equivalent stiffness and
damping functions as

kIeq (Da )=
1

pua (Da ) g
p

−p

F sin u du, cIeq (Da )=
1

pua (Da ) g
p

−p

F cos u du. (19, 20)

It is notable that the equivalent stiffness and damping are functions of amplitude slip
coefficient, but not the interblade phase angle which was the case when HBM1 was applied
to the platform force. The equivalent traction force is then

Feq (Da , u)= kIeq (Da )ua (Da ) sin u+ cIeq (Da )ua (Da ) cos u. (21)

One needs to establish the relationship between the friction interface displacement and
platform displacement in order to compare hysteresis curves for the two linearization
methods. Equations (18) and (21) in equation (6) give the damper displacement as a
function of interface properties:

v(Da , u)= ua (Da )[(2+ kleq (Da )/kd ) sin u+(cIeq (Da )/kd ) cos u]. (22)

Equations (12) and (13) in equation (10) give the damper displacement as a function
of platform displacement:

vj (u)=wa [(1−cos 8) sin u+sin 8 cos u]. (23)

Equations (22) and (23) should be equal and this gives the amplitude slip coefficient Da .
The resulting hysteresis curve is shown as HBM2 in Figure 8. From these curves one can
see that the first harmonic component in HBM is not enough to describe the exact
hysteresis curve. One method of comparing the linear systems to the exact non-linear is
to compute the damping energy per cycle of motion, W: WNonlin =2·162×10−3 J/cycle,
WHBM1 =2·864×10−3 J/cycle, WHBM2 =2·713×10−3 J/cycle.

The difference in damping energy is about 33% for the first and 26% for the second
method of linearization compared with the exact damping energy, for this particular case.
It was observed by plotting curves for different phase angles that the difference in damping



keq (∆a)
kd

keq (∆a)

ceq (∆a)ceq (∆a)
k*BB (∆a)

      403

energy increases with smaller phase angles, and that the linearized damper always gives
too much damping. Comparing the two methods of linearization with each other shows
that the difference in damping energy is small, and either one may be used. There is,
however, a benefit in computation time when using the HBM2 method. This is due to the
fact that the platform has to be integrated numerically for varying interblade phase angle
and displacement amplitude in HBM1, while the interface force is only numerically
integrated for varying displacement amplitude in HBM2.

4.3.  --  

Griffin and Sinha [9] have shown that the response of a bladed disk with multiple blade
and BB-damper elements agrees well with the response of a system with a single blade and
an equivalent blade-to-ground damper. The model that they used was a one-degree-of-free-
dom model for the blade and damper model consisting of a macroslip element in series
with a spring. Sinha and Griffin [8] showed that equivalence between a BB-damper and
a BG-damper is found if

kBG =4kBB sin2 (8/2), FSBG =2FSBG sin (8/2). (24, 25)

For the macroslip damper FS is the limiting friction force and k is the stiffness of the
spring. In this section equations will be derived that give equivalence between BB- and
BG-damper for the micro-macroslip damper described in this paper.

Using HBM2 one may express the linearized friction interface as a complex stiffness k*I ,

k*I (Da )= kIeq (Da )+ icIeq (Da ). (26)

The BB-damper is now described by two friction interfaces, each having a complex stiffness
k*I , in series with the elastic damper stiffness kd , as shown in Figure 9.

The resulting stiffness of this BB-damper is

k*BB(Da )= k*I (Da )kd /[2kd + k*I (Da )]. (27)

Using equation (27) one may write the damper force as a function of the damper
displacement:

F*= k*BB(Da )v. (28)

The force on the platform from a BG-damper is defined as

P*= k*BGw. (29)

Next one needs to establish the relationship between damper and platform force and also
damper and platform displacement. It is in this case more convenient to express platform
displacements in equations (12)–(14) by using complex notation:

w*j−1 = ŵ ei(u−8), w*j = ŵ eiu, w*j+1 = ŵ ei(u+8). (30–32)

Equations (30)–(32) in equation (10) give the damper displacement as

v*j−1 = ŵ eiu(1−e−i8), v*j = ŵ eiu(ei8 −1). (33, 34)

Figure 9. Linearized model of a damper.
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Figure 10. Parallel–series model of a friction damper.

Equations (33) and (34) in equation (28) give the damper forces, which with equation (11)
will give the platform force as

P*j (Da , 8)= k*BB(Da )ŵ eiu(2−e−i8 −ei8). (35)

Comparing equation (35) with equation (29) gives equivalent blade-to-ground stiffness,
after simplification, as

k*BG(Da , 8)=4k*BB(Da ) sin2 (8/2). (36)

Evidently equation (36) agrees exactly with equation (24). The difference is that the
BG-stiffness for the micro-macroslip damper is a function not only of interblade phase
angle but also of amplitude slip coefficient.

The best way to see if the linearization is acceptable is to compare the forced response
for a system where keq and ceq are used with the response for a system where the original
nonlinear damper equations are used. This is the topic of the following sections of this
paper.

4.4.   

Force and displacement functions must be able to vary arbitrarily in a transient time
domain simulation. It is possible to find the damper force for a given arbitrary
displacement, by using Massing rules, but it is not efficient when computation time is
considered. Instead, a numerical damper model based on the parallel–series model by Iwan
[10] has been developed. The model has been used by Wettergren and Csaba [11] and
Wettergren [12], to simulate dynamic instability in a turbine generator due to microslip.
A similar model has also been used by Sanliturk and Ewins [13]. The model is here
extended to incorporate macroslip.

The parallel–series model, shown in Figure 10, consists of a number of macroslip
elements in parallel forming a microslip element. The force–displacement relationship is
described by

F(v)= s
n'

j=1

sjFf,j + s
n

j= n'+1

kj (v− v0,j ), (37)

where the summation from 1 to n' includes all elements that are slipping, and the
summation from n'+1 to n includes all elements that remain elastic after loading. Stiffness
ki and limiting friction force Ff,j are found from initial loading functions equation (1) and
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Figure 11. Beam model of a blade.

equation (2). This formulation has two new features, a state vector s, and a displacement
vector v0. The direction of the friction force is saved in sj as element j starts to slip. The
displacements of all slipping elements are saved in v0, and n' is set to zero when the time
derivative of the damper displacement, v̇ changes sign. These two features allow for an
arbitrary displacement function and a combination of both macro- and microslip.

5. BLADED DISK MODEL

A simplified blade model as shown in Figure 11 was used for simulations. It consists
of four elements where element 1 represent the blade neck, 2 the platform, 3 and 4 the
airfoil of the blade. A torsion spring with stiffness, kdisk connects the blade to the disk, which
is considered as rigid ground. Dampers are attached at node 1, represented by force F1.
The blade is excited at node 3, force Q. Three criteria were established for equivalence
between the full FE-model and the beam model: (a) the same first natural frequency, fn ;
(b) the same mode shape for the first natural frequency; (c) the total mass should be the
same.

Natural frequencies and mode shape for the first flexural frequency were computed for
the full FE-model. Results are shown in Table 2 and Table 3. The second column
corresponds to simulations where a spring with stiffness kd is attached at node 1. This gives
a crude estimation of how well the two models agree for a locked damper, i.e., no slip in
the contact interface.

T 2

Natural frequencies for FE and beam models

FE model Beam model
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

Mode fn (Hz) fn , locked (Hz) fn (Hz) fn , locked (Hz)

1F 1079 1221 1077 1242
2F 4746 5110 4960 5527

† A spring with stiffness kd is attached at node 1.

T 3

Mode shape at first natural frequency for FE and beam models

FE model Beam model
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

Node c c, locked c c, locked

1 0·0543 0·0266 0·0528 0·0321
2 0·0988 0·0651 0·0978 0·0676
3 0·4813 0·4627 0·4866 0·4500
4 1 1 1 1
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Figure 12. A blade-damper system connected to a rigid disk.

Parameters, i.e., beam height and width, and attachment stiffness kdisk were varied to get
the best fit for the 1F frequency and mode shape. The results are also shown in Tables
2 and 3. Comparing the results, one sees that there is good enough agreement for the
present purpose between the full FE-model and the beam model.

6. FORCED RESPONSE SIMULATION

Griffin and Sinha [9] have shown that the response of a bladed disk with multiple blade
and BB-damper elements agrees well with the response of a system with a single blade and
an equivalent BG-damper. The models they used were a one-degree-of-freedom model for
the blade and a damper model consisting of a macroslip element in series with a spring.
They assumed harmonic motion in both simulation cases. This section is concerned with
investigating whether the equivalence also holds for a micro-macroslip damper, but
harmonic motion is not assumed for the BB-damper case.

The damper–blade system that was used for simulations is shown in Figure 12. It
consists of N blades and dampers. Each damper, shown as a grey box, is attached to two
blades, the last damper being connected to the last and the first blade, as shown in Figure
12. It is assumed that the excitation is in the form of a travelling wave. This implies that
the number of blades needed for the analysis is N=2p/8, where 8 is called the interblade
phase angle. The excitation force is then Qj (t)=Q
 ei(vt− j8), where Q
 is the amplitude.

A computer code was developed to analyze the system. Basic features are: mass and
stiffness matrix for one blade are imported from the finite element program used in section
3. The frequency domain solution is used as initial value for the time domain simulation.

6.1.   

It is not necessary to use the complete N-blade-damper system to find the frequency
domain solution. This is due to the fact that all blades are tuned and thus have the same

Figure 13. Blade-damper system used in frequency-domain simulation.
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Figure 14. Amplitude tip displacement versus excitation frequency for damper mass 5 m, 10 m, 20 m and
100 m. Simulation with N=8 blades. A, 5 m; B, 10 m; C, 20 m; D, 100 m. ——, Time; - - - , frequency.

response. Instead the computer program uses one blade and a blade-to-ground damper,
as shown in Figure 13.

The governing equation is

[M]{ẍ}+[C]{ẋ}+[K]{x}= {Q}. (38)

The damping matrix is generated by using Rayleigh damping:

[C]= a[M]+ b[K]. (39)

Coefficients a and b are chosen to give the assumed value of 1% modal damping at the
first resonance frequency for the blade. One may either choose a value for a and then
compute b, or the other way around. The damping matrix represents other types of
damping in the system, apart from the contribution from the platform damper. The
complex damper stiffness, k*BG is then assembled into the blade matrix. This gives a system
stiffness matrix [K*] which is complex. Harmonic excitation and displacement are assumed:

{Q*}= {Q
 *} eivt, {x*}= {x̂*} eivt (40, 41)

Equations (38)–(41) give the response as

{x̂*}=([K*]+ iv[C]−v2[M])−1{Q
 }. (42)

For every v, equation (42) is solved by an iterative procedure, where the slip coefficient
Da has to be found. It was shown in section 4.3 that for a given amplitude of blade platform
displacement, the relative motion of two adjacent blades, i.e., the damper displacement,
is as given by equation (34). This equation may be expressed as

v0(Da , 8)=2=x̂*1 = sin (8/2), (43)

where =x̂*1 = and v0 are platform and damper amplitude displacements respectively. Thus
equation (42) is solved by iterating the slip coefficient Da so that equation (43) is in
equilibrium.

6.2.   

The N-blade–damper system is used in the time domain simulation. The governing
equations are equations (38), (39) and (40), where equation (38) is rewritten as a first order
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ODE to suit the time domain solver. The response is found by exciting at a given frequency
and then using direct time integration until steady state is reached.

These simulations tend to take a long time. The time and frequency response are fairly
close, at most excitation frequency values, as shown in Figure 14. The frequency domain
response is therefore used as initial value in the time domain simulation. This was shown
to be quite effective and reduced computation time considerably.

7. NUMERICAL RESULTS

Simulations were made for N=8, 13 and 19 blades, which correspond to interblade
phase angles 8=45°, 27·7° and 18·9° respectively. The main effect of varying the number
of blades is on the damper stiffness, which is also indicated by equation (36). Figure 14
show results from the N=8 simulation. Simulations with N=13 and 19 gave essentially
the same response curves, but with less shift in resonance frequency as the damper is
loaded. These simulation results are not presented here.

The most characteristic parameter in friction damper design is the normal force on the
friction interface. The normal force is found from the centripetal acceleration of the
damper mass which is induced by the rotor speed. One should note that the damper normal
load is therefore frequency dependent and it is more accurate to use the damper weight
as a parameter rather than the normal load on the interface.

7.1.       

Response plots for simulations with a given excitation force, Q and varying damper mass
5 m, 10 m, 20 m, and 100 m are shown in Figure 14. These simulations and corresponding
response curves are denoted from A to D as shown in the plot legend. The plot shows
tip deflection, i.e., =x̂*4 = versus excitation frequency. It can be seen that the resonance
frequency increases with the damper weight. It is furthermore seen that there is an optimal
damper weight which minimizes the overall response, but more than five response curves

Figure 15. Hysteresis loop at resonance amplitude for simulations A, B, C, D representing damper mass 5 m,
10 m, 20 m, 100 m. Key as Figure 14.
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Figure 16. Tip displacement at resonance versus damper mass. Micro- and macroslip simulations in time and
frequency domain. Simulation with N=8 blades. – · – · , Macro; w–w, time; -P-P-P-, frequency.

are needed to determine what optimum weight is. One sees also in Figure 14 that frequency
and time domain solutions agree well for high and low damper weights, but not as well
for weights around the optimal.

7.2.      

Hysteresis plots for the platform, node 1, are shown in Figure 15. The platform
displacement, w is plotted versus the force from the dampers on the platform, P. One sees
in Figure 14 that simulations A, B and D give a higher response in the time domain, while
simulation C gives a lower response. Figure 7 in section 3.2 shows a hysteresis curve that
was plotted upon assuming that the displacement is harmonic and then computing the
corresponding damper force. Comparing Figure 7 with time domain hysteresis for
simulations A and B in Figure 15 shows close resemblance. It was found in section 4.2.
that the linearized damper gives higher damping energy than the non-linear one for a given
amplitude displacement. This can also be seen in Figure 14, for simulations A and B. The
difference between time and frequency response is greater for simulation B simply because
a heavier damper has more effect on blade response.

Simulation D in Figure 14 shows good agreement between time and frequency solutions.
This is shown in Figure 15 where the solid curve is almost elliptic. It can also be seen in
this figure that there is little friction damping in this simulation, which is indicated by the
enclosed area of the hysteresis curve. The damper works more as a stiffener than a friction
damper in this simulation.

The appearance of the time domain hysteresis curve for simulation C is somewhere in
between curve B and D. The overall shape is fairly elliptic, but there are force harmonics
of higher order seen in the plot. This can also be found by Fourier expanding the response
displacement and the damper force on the platform. It appears that energy is dissipated
due to higher harmonics so that the peak amplitude in Figure 14 is lower in the time
domain solution than in the frequency domain solution.

7.3.   

The optimal damper weight, i.e., the weight that minimizes the blade response over the
frequency range of interest, is found by plotting response maximum against the friction
damper weight, as shown in Figure 16. This figure shows results for time and frequency
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domain simulations with the microslip damper model. There is also a dotted curve showing
results with the same damper model except that the microslip interface model has been
replaced by a macroslip model. This was done to highlight the difference in response results
between the two interface models.

Comparing results from time and frequency domain simulations shows that they agree
well. There is however less agreement near the optimal damper weight which is 12 m and
16 m for time and frequency domain results respectively. The difference in weight is about
25%, which one may consider acceptable, but a more important difference is that the
frequency domain simulation gives a lighter optimal damper weight than the time domain
simulation does. If one assumes results from time domain simulations to be more accurate
but uses frequency domain simulations to find the optimum damper weight, then one
should choose a weight that is slightly heavier than suggested by frequency domain results.
One should also note that the gradient of the displacement curve is large on the left hand
side of the optimal point. It is interesting to note that the response at optimal damper
weight is approximately the same for time and frequency simulations. Comparing results
obtained with the microslip model and results from using a standard macroslip interface
model shows that the latter model gives higher response levels, but approximately the same
optimal damper weight.

7.4.    

Csaba [6] and Menq and Griffin [7] have done simulations with one blade, modelled with
beam elements, and one blade-to-ground damper. Both papers showed very good
agreement between time and frequency domain solutions. The present work shows that
the agreement is not so good when the microslip blade-to-blade damper is loaded near the
optimal weight. This was not observed in references [6] and [7]. One may also note that
the response curve is flattened around resonance in reference [7] for high normal loads,
while this paper shows more distinctive peaks at resonance. This is due to the fact that
in reference [7] a macro-slip model was used, which locks up for high normal loads, while
there is still slip in a microslip model.

8. CONCLUSIONS

A microslip model of an actual friction damper has been developed in this paper. There
are two formulations of the damper derived from the original force and displacement
functions of the damper: a numerical blade-to-blade model for simulations in the time
domain and a linearized blade-to-ground model for simulations in the frequency domain,
where the complex equivalent stiffness of the damper is derived by applying the harmonic
balance method to the non-linear force from a given harmonic displacement.

Results show that hysteresis curves using original force and displacement functions and
curves using the linearized model give about 30% difference in damping energy, where the
linearized damper always gives too much damping.

The numerical friction damper was used in time domain simulation of the forced
response of a beam–damper system under travelling wave excitation. Frequency domain
simulations with one blade and a blade-to-ground damper were also carried out. Results
from these two simulation methods were compared.

Comparison of the two methods shows that they agree well, except around the optimal
damper weight, which is the weight that minimizes the response amplitude of the blade
and damper system. Results from frequency domain simulations give a lighter optimal
damper weight than simulations in time domain. This leads to the conclusion that if
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frequency domain simulations are used to find the optimum damper weight, then a slightly
heavier damper weight should be chosen than suggested by frequency domain results.

Comparison between using a microslip and a macroslip model for friction interface
shows that the macroslip model gets close in predicting the optimal weight, but the
response level is much higher than when the microslip model was used.

The final conclusion is that tuned disk simulations with a one-blade and a
blade-to-ground damper may be used to get a crude estimation of the optimal weight for
the friction damper and simulations in the time-domain can be used to get complementary
results.
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APPENDIX: NOTATION

A damper-bar cross-section area
ceq damping term
[C] damping matrix
DOF degree of freedom
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E modulus of elasticity
EO engine order of excitation
F traction force on friction joint, blade-to-blade damper force
Ff friction force per unit length
Feq linearized traction force
fn natural frequency
HBM harmonic balance method
j blade co-ordinate
k stiffness term
[K] stiffness matrix
keq equivalent stiffness function
kd damper stiffness between friction joints
l damper-bar length
[M] mass matrix
N number of blades in simulation
n number of blades on disk
P force on platform from dampers
Q excitation force on blade airfoil
q normal load function

Subscript

a amplitude
BB blade to blade
BG blade to ground
eq equivalent linearized property
I Interface
i initial loading
m macro
P platform
u unloading
r reloading

Mathematical symbols

[ ] a rectangular or square matrix
{ } a column vector
· d/dt
g amplitude value
* a complex quantity
q0q2 coefficients for normal load function
s slip direction vector
u friction interface displacement
v damper displacement
w platform displacement
W damping work
x displacement co-ordinate
a, b parameters for Rayleigh damping
b phase angle between excitation and response
D slip coefficient
8 interblade phase angle
m coefficient of friction
v excitation frequency
c mode shape value
u angular co-ordinate


